On quasi-conformally flat weakly Ricci symmetric manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformally Flat Manifolds with Nonnegative Ricci Curvature

We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...

متن کامل

On Conharmonically and Special Weakly Ricci Symmetric Sasakian Manifolds

We have studied some geometric properties of conharmonically flat Sasakian manifold and an Einstein-Sasakian manifold satisfying R(X, Y ).N = 0. We have also obtained some results on special weakly Ricci symmetric Sasakian manifold and have shown that it is an Einstein manifold. AMS Mathematics Subject Classification (2000): 53C21, 53C25

متن کامل

Conformally flat metrics on 4-manifolds

We prove that for each closed smooth spin 4-manifold M there exists a closed smooth 4-manifold N such that M#N admits a conformally flat Riemannian metric.

متن کامل

Geometric Inequalities on Locally Conformally Flat Manifolds

In this paper, we are interested in certain global geometric quantities associated to the Schouten tensor and their relationship in conformal geometry. For an oriented compact Riemannian manifold (M,g) of dimension n > 2, there is a sequence of geometric functionals arising naturally in conformal geometry, which were introduced by Viaclovsky in [29] as curvature integrals of Schouten tensor. If...

متن کامل

On Locally Conformally Flat Gradient Steady Ricci Solitons

In this paper, we prove that a complete noncompact non-flat conformally flat gradient steady Ricci soliton is, up to scaling, the Bryant soliton. 1. The result A complete Riemannian metric gij on a smooth manifold M n is called a gradient steady Ricci soliton if there exists a smooth function F on M such that the Ricci tensor Rij of the metric gij is given by the Hessian of F : Rij = ∇i∇jF. (1....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Hungarica

سال: 2008

ISSN: 0236-5294,1588-2632

DOI: 10.1007/s10474-008-8001-1